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Abstract. We utilize exponential sum techniques to obtain upper and lower bounds for

the fractal dimension of the graph of solutions to the linear Schrödinger equation on Sd and

Td. Specifically for Sd, we provide dimension bounds using both Lp estimates of Littlewood-

Paley blocks, as well as assumptions on the Fourier coefficients. In the appendix, we present

a slight improvement to the bilinear Strichartz estimate on S2 for functions supported on

the zonal harmonics. We apply this to demonstrate an improved local well-posedness result

for the zonal cubic NLS when d = 2, and a nonlinear smoothing estimate when d ≥ 2. As a

corollary of the nonlinear smoothing for solutions to the zonal cubic NLS, we find dimension

bounds generalizing the results of [ErTz2] for solutions to the cubic NLS on T. Additionally,

we obtain several results on Td generalizing the results of the d = 1 case.
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1. Introduction

In this paper, we investigate so called the Talbot effect and fractal solutions of the linear

Schrödinger equation on certain compact manifolds M = Sd, or Td for d ≥ 2:iut +△Mu = 0

u(0, x) = f(x) ∈ L2(M),
(1)

where △M is the Laplace-Beltrami operator on M.

Many authors have studied the properties and dimension of the graph of the solution to

the linear Schrödinger equation and other dispersive equiations on T with varying initial

data; see, e.g., [Be, BeKl, BMS, Os, KaRo, Ro, ErTz1, ErTz2, OsCh, ChOl, HoVe, CET,

Ve, ErTz3, OlP, OlTs]. The history of this line of inquiry starts with an optical experiment

in 1836 where Talbot studied monochromatic light passing through a diffraction grating

[Ta]. He observed there is a certain distance (now called the Talbot distance) at which

the diffraction pattern reproduces the grating pattern. It was further remarked that the

pattern appears to be a finite linear combination of the grating pattern at each rational

multiple of the Talbot distance. This phenomenon has since been referred to as the Talbot

effect. Berry and collaborators were among the first to carry out exact calculations and

numerical works on the Talbot effect in [Be, BeKl, BLN]. In particular, in [BeKl] it was

proved that at rational times the solution is a linear combination of finitely many translates

of the initial data with the coefficients being Gauss sums, also see [TaM1, TaM2, OlP, OlTs].

This phenomenon is often called quantization in the literature. In [BeKl], the authors also

observed that the solution at irrational times has a fractal profile. In particular for step

function initial data at rational times one observes a step function, and a continuous but

nowhere differentiable function with fractal dimension 3
2
at irrational times1. Finally, it was

conjectured that this phenomenon should occur in higher dimensions and even when there

is a nonlinear perturbation, also see [ZWZX] for an experimental justification.

In the field of mathematics, Oskolkov proved in [Os, Proposition 14] that for bounded

variation initial data, the solution of any dispersive PDE on T with polynomial dispersion

relation is a continuous function of x at irrational times. Kapitanski and Rodniaski showed

in [KaRo] the solution to the linear Schrödinger equation at irrational times is more regular

in the Besov scale than at rational times. Rodniaski then used results in [KaRo] to justify

Berry’s conjecture, proving, that given initial data in BV (T) \ H1/2+(T), the graph of the

1Recall that the fractal dimension (or upper Minkowski/box dimension) of a bounded set E is given by

dimE := lim supϵ→0
logN (E,ϵ)
log(1/ϵ) , where N (E, ϵ) is the minimum number of boxes of sidelength ϵ needed to

cover E.
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real and imaginary parts of the solution to (1) has fractal dimension 3/2 for almost every

time.

This paper is motivated by the works by the first author, Tzirakis, and Shakan in [ErTz1,

ErTz2, ErTz3, ErSh]. In these papers, the authors considered the case of polynomial and

nonpolynomial dispersion relations, and proved several results on dimension bounds using

exponential sum estimates on T. In particular, they obtained fractal dimension bounds

for the graph of the real and imaginary part of solutions with bounded variation initial

data. In addition, the results on the dimension were extended to nonlinear counterparts

via nonlinear smoothing estimates. As these works were done on T, it is clearly desirable

to obtain analogous estimates on more general compact manifolds. In the case of Td, one

can easily extend the rational time quantization results on T to Td, [TaM1]. It is also clear

that the results in [Os, Ro, ErTz1, ErTz2, ErTz3, ErSh] can be extended to Td in the case

when the initial data is a tensor function, establishing the existence of fractal solutions, and

a dichotomy similar to the one on T. On the other hand, extending the fractal behavior

results to even just S2 or to more general functions on Td is not as straightforward, and

proving satisfactory dimension bounds on Sd for d ≥ 3 turns out to be quite challenging. We

note that in [TaM2], Taylor studied the Talbot effect for the Schrödinger propagator on Sd

and obtained multiplier estimates at rational times. This is analogous to the quantization

behavior at rational times on the torus since finite linear combinations of translations are

bounded operators on all Lp spaces. Also see [HaLo] and [ChSa] for various results on

the quantization on S2. In this paper, by establishing the existence of fractal solutions at

irrational times, we obtain a dichotomy on Sd similar to the one on T, or Td.

To study this problem, as in the earlier papers, we will utilize Besov spaces, Bs
p,∞, defined

by the norm ∥f∥Bγ
p,∞ := sup{Nγ∥fN∥Lp : N ≥ 1, dyadic}, 1 ≤ p ≤ ∞, where fN is the

Littlewood-Paley projection to frequencies ≈ N . Recall that for 0 < γ < 1, Cγ(T) coincides
with Bγ

∞,∞(T), and that if f : T → R is in Cγ, then the graph of f has fractal dimension

D ≤ 2− γ. For lower bounds we have the following result of Deliu and Jawerth [DeJa] (also

see [ErTz3, Theorem 2.24]): Fix γ ∈ [0, 1]. The graph of a continuous function f : T → R
has fractal dimension D ≥ 2− γ provided that f ̸∈ Bγ

1,∞. Analogous results hold for Td and

Sd; see Theorem 2.4 and Theorem 2.8 below for the case of Sd.

Before moving on to the statements of the results, we first take a moment to discuss

generalizations of the BV (T) requirement of [Os, Ro]. Specifically, f ∈ BV (T) implies that

f̂(n) = 1
in
d̂f(n), which leads to, for 1 ≤ p ≤ 2, ∥fN∥Lp

x(T) ≲ N− 1
p . It follows then that a

natural generalization would be the requirement that ∥fN∥Lp ≲ N− d
2
−s for some p ≥ 1, and

s ≥ 0. This is the approach taken for Theorems 1.1 and 6.1. On the other hand, f ∈ BV (T)
also implies that |f̂(n)| ≲ n−1 and additional bound on the differences up to a phase. Thus,
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the next possible generalization is to require decay on the Fourier coefficients, which is the

approach of Theorems 1.3, 3.8, and 6.4.

In particular, when M is understood, we define dimt(f) to be the maximum of the fractal

dimensions of the real and imaginary parts of u(·, t), the solution to (1) emanating from f

at time t; see (15) for Sd. Using this notation, we show in Section 3 bounds on dimt(f)

depending on the Lp norms of the Littlewood-Paley pieces, fN , of f on Sd.

Theorem 1.1. Let f : Sd → R, 1 < p ≤ 2, s > max{d
p
− d+1

2
, 0}. Assume that ∥fN∥Lp ≲

N−( d
2
+s). Then for almost all t, the solution u(·, t) to (1) is in Cγ− for γ = min{s, s+ d+1

2
−

d
p
, 1}. Hence for almost all t, dimt(f) ≤ d+ 1− γ, where γ = min(s, s+ d+1

2
− d

p
, 1).

In the case d = 2, if f ̸∈ Hs+2− 2
p
+(S2) in addition to the hypothesis above, then

dimt(f) ≥ max
(

3
4
+ 2

p
− s, 2

)
.

We only have the lower bound in the case d = 2 because it relies on a Strichartz estimate

which is not strong enough for this purpose when d > 2.

Corollary 1.2. Let p = 2d
d+1

and assume ∥fN∥Lp ≲ N−d/p. Then for almost all t, u(t, x) ∈
C

1
2
−, and hence dimt(f) ≤ d+ 1

2
.

As the above formulation is not easy to use for specific f , we also seek generalizations in

terms of the Fourier coefficients of f . In Section 3.1, we specialize to the case d = 2 and

provide bounds for dimt(f) using only information on the Fourier coefficients in the specific

cases that f is supported on the Zonal harmonics, Yn := Y 0
n , in S2:

Theorem 1.3. Let f(θ, ϕ) =
∞∑
n=0

an Yn(θ, ϕ). If for some 1 < p < 2 we have

|an| ≲ 1
np , and |an − an−1| ≲ 1

np+1

for all n ∈ N ∪ {0}, then for almost all t, u(x, t) ∈ C(p−1)−, and hence dimt(f) ≤ 4− p.

If, in addition, f ̸∈ Hp− 1
2
+(S2), then we also find dimt(f) ≥ max

(
7
2
− p, 2

)
.

We additionally extend this result to the case when f is supported on {Y k
n }n for k fixed in

Lemma 3.7, and the case when f is supported on Gaussian beams, {Y n
n }n, in Theorem 3.8.

In addition, we also note the following Corollary, whose proof is immediate from the

methods in Theorem 1.3 and is stated separately from Theorem 1.3 due to the work in

Appendix 5.

Corollary 1.4. Suppose that d
2
< p < d

2
+ 1 and {an} satisfies

|an| ≲ 1
np , and |an − an−1| ≲ 1

np+1 .
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Then if f ∈ Sd is supported on the zonal harmonics with Fourier coefficients {an}n, then for

almost all t, u ∈ Cp− d
2
+ and dimt(f) ≤ (d+ 1)−

(
p− d

2

)
.

In Appendix 5, we provide an improved estimate on products of zonal harmonics on S2

which will be useful in obtaining lower bounds in Section 3.1. As a consequence of this

estimate and the symmetries of the cubic nonlinear Schrödinger equation, we obtain both

local well-posedness to (60) for s > 0 in Theorem 5.3 and nonlinear smoothing2 in Theorem

1.5 for the class of functions supported on the zonal harmonics.

Theorem 1.5. Let d ≥ 2, s > d−2
2
, and

0 ≤ ε < min
(
1
2

(
s− d−2

2

)
, 1
)
.

For u0 ∈ Zs(Sd), let u denote the solution to (27) emanating from u0 with local existence

time T > 0. Then, letting (see (38) below)

(2) γ(t;u) =
2

πωd

∑
k,ℓ

ûk(t)ûℓ(t)

∫ π

0

Yk(θ)Yℓ(θ) dθ,

we have

u− eit△Sd∓i
∫ t
0 γ(s;u) dsu0 ∈ C0

t

(
[0, T ), Hs+ε

x

)
.

In particular, for all 0 < t < T ,

inf
θ∈R

∥∥u− eiθeit△Sdu0

∥∥
Hs+ε

x
≲ C∥u0∥Hs .

We then use this nonlinear smoothing to show our final theorem on the cubic NLS posed

on zonal functions on Sd for d ≥ 2:

Theorem 1.6. Let d ≥ 2 and f satisfy the hypothesis of Theorem 1.4 for some d+1
2

< p < d+2
2

and let u denote the solution to (27) emanating from f . Then f ∈ Zp−1/2− := Hp−1/2−(Sd)∩
span{Yn : n ∈ N} and

dimt(f) ≤ (d+ 1)−
(
p− d

2

)
.

Finally, we offer several extensions of the results from [ErSh] to Td in Appendix 6. Of

particular interest is the statement of the result of [Ro] for Vitali BV functions (for definitions

and a survey, see [AdCl2, AdCl, Za]), and Theorems 6.8 and 6.9 on the graphs of solutions

emenating from characteristic functions of polygons and polytopes.

We finish the introduction with some notation. We say that f ≲ g if there is a C > 0 so

that f ≤ Cg, and also denote a+ to be a+ ε for all ε > 0, with implicit constants that will

depend on ε. We also define the bracket ⟨·⟩ := (1 + | · |2)1/2.
2See Section 4 for an introduction to nonlinear smoothing and motivation for the statement of Theorem

1.5.
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2. Harmonic Analysis on the Sphere

We start with a discussion of spherical convolution of f : Sd → C and g : [−1, 1] → C,
both continuous, say:

f ∗ g(x) := 1

ωd

∫
Sd
f(y)g(⟨x, y⟩) dσ(y), x ∈ Sd,

where dσ is the surface measure and ωd the surface volume of Sd, and ⟨x, y⟩ is the Rd+1 inner

product of x, y ∈ Sd. Note that

∥g(⟨x, ·⟩)∥rLr(Sd) =
1

ωd

∫
Sd
|g(⟨x, y⟩)|r dσ(y) = ωd−1

ωd

∫ 1

−1

|g(τ)|r(1− τ 2)
d−2
2 dτ

is independent of x ∈ Sd (and similarly if we take the norm in the x variable for fixed y).

Therefore, we define

(3) ∥g∥Lr
w([−1,1]) := ∥g(⟨ed+1, ·⟩)∥Lr(Sd)

=

(
ωd−1

ωd

∫ 1

−1

|g(t)|r(1− t2)
d−2
2 dt

)1/r

=

(
ωd−1

ωd

∫ π

0

|g(cos(θ))|r[sin(θ)]d−1 dθ

)1/r

.

With that, and by an application of Holder, Minkowski inequalities and Riesz-Thorin inter-

polation, one gets, for 1
p
= 1

r
+ 1

q
− 1,

(4) ∥f ∗ g∥Lp(Sd) ≤ ∥f∥Lq(Sd)∥g∥Lr
w([−1,1]).

For more details see [DaXu, Chapter 2].

On Sd (with obvious metric) we denote the Laplace-Beltrami operator by △. With the

inner product ⟨f, g⟩Sd := 1
ωd

∫
Sd f(x)g(x)dσ(x), the eigenfunctions (spherical harmonics) of

−△ form an orthonormal basis for L2(Sd), in particular

f(x) =
∞∑
n=0

projnf(x),

where the series converges in L2. Here projn is the projection onto En(n+d−1), the subspace

of L2(Sd) spanned by the eigenfunctions with eigenvalue n(n+ d− 1). Recall that (see, e.g.,

[DaXu, Section 1.2]), these projections are given by a spherical convolution of f :

(5) projnf(x) = f ∗ Zn(x) =
1

ωd

∫
Sd
f(y)Zn(⟨x, y⟩) dσ(y), x ∈ Sd.

Here, Zn’s are the zonal harmonics:

Zn(τ) :=
(

2n
d−1

+ 1
)Γ(d/2)Γ(d+n−1)

Γ(d)Γ(n+d/2)
P

( d−2
2

, d−2
2

)
n (τ), τ ∈ [−1, 1],(6)

where P
(α,β)
n denotes the Jacobi polynomial. To prove the theorems on the sphere, we need

to study zonal harmonics in some detail. In particular, we need to understand the growth

and oscillation of the Jacobi polynomials:
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Lemma 2.1. For d ≥ 2 the have

Zn(cos(θ)) = b+n (θ)e
inθ + b−n (θ)e

−inθ + E1(θ, n), where

|b±n (θ)| ≲
nd−1

⟨nθ⟩ d−1
2

, |b±n (θ)− b±n−1(θ)| ≲
nd−2

⟨nθ⟩ d−1
2

, and |E1(θ, n)| ≲ nd−3.(7)

Similarly, we find that the zonal spherical harmonic of degree n satisfies

Yn(θ) = b+n (θ)e
inθ + b−n (θ)e

−inθ + E2(θ, n), where

|b±n (θ)| ≲
n

d−1
2

⟨nθ⟩ d−1
2

, |b±n (θ)− b±n−1(θ)| ≲
n

d−3
2

⟨nθ⟩ d−1
2

, and |E2(θ, n)| ≲ n
d−5
2 .

Lastly, let d = 2 and fix k ∈ Z. For n ≫ |k|, we have the expansion

Y k
n (θ) = b+n,k(θ)e

inθ+ikϕ + b−n,k(θ)e
−inθ+ikϕ + E2,k(θ, n; k), where

|b±n,k(θ)| ≲
n

1
2

⟨nθ⟩ 1
2

, |b±n,k(θ)− b±n−1,k(θ)| ≲
1

n
1
2 ⟨nθ⟩ 1

2

, and |E2,k(θ, n)| ≲
1

n
1
2 ⟨nθ⟩ 1

2

.

Proof. For all of the above we first note that we may reduce, by symmetry, to considering

[0, π/2]. Equation (6) now allows us to write

Zn(cos θ) = cd(n)P
( d−2

2
, d−2

2
)

n (cos θ),

where Stirling’s approximation,

(8) n! =
√
2πn

(
n
e

)n (
1 +O

(
1
n

))
,

yields cd(n) = n
d
2

(
1 +O

(
1
n

))
. The claims of (7) will then follow by establishing

(9) P
( d−2

2
, d−2

2
)

n (cos θ) = b̃+n (θ)e
inθ + b̃−n (θ)e

−inθ + Ẽ1(θ, n), where

|b̃±n (θ)| ≲
n

d−2
2

⟨nθ⟩ d−1
2

, |b̃±n (θ)− b̃±n−1(θ)| ≲
n

d−4
2

⟨nθ⟩ d−1
2

, and |Ẽ1(θ, n)| ≲ n
d−6
2 .(10)

In that direction, we note that by [BaGa, Theorem 1.2] we have, for θ ∈ [0, π/2],

(11) P
( d−2

2
, d−2

2
)

n (cos θ) =
Γ(n+ d/2)

n!

[
αd(θ)

J d−2
2
(Mθ)

(Mθ)
d−2
2

+ βd(θ)
Jd/2(Mθ)

(Mθ)d/2
+O

(
θ2

n2

)]
where M = n+ d−1

2
, |αd(θ)| ≲ 1, |βd(θ)| ≲ θ2, and Jγ is the Bessel function of the first kind

of order γ. Noting that Stirling’s approximation again gives

(12)
Γ(n+ d/2)

n!
= n

d−2
2

(
1 +O

(
1
n

))
,
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we reduce to finding suitable bounds on J d−2
2
(Mθ) and J d

2
(Mθ). This, however, follows by

clasically relating Bessel functions to Fourier transforms of surface measures associated to

spheres. Let σd−1 be the surface measure of the d − 1 dimensional unit sphere, d ≥ 2. We

have

(2π)
d
2

J d−2
2
(|ξ|)

|ξ| d−2
2

= σ̂d−1(ξ) =

∫
e−ix·ξ dσd−1(x) = w+

d−1(|ξ|)e
i|ξ| + w−

d−1(|ξ|)e
−i|ξ|,

where

|w±
d−1(r)| ≲ ⟨r⟩−

d−1
2 , and |∂θw±

d−1(r)| ≲ ⟨r⟩−
d+1
2 .

Using these and (12) on the right hand of (11), we obtain the representation given in (9)

and (10). The bound for Yn(θ) follows from the above by noting that

(13) Yn(θ) :=

√
(2n+d−1)Γ(n+d−1)Γ(n+1)

2d−1Γ(n+1+ d−2
2

)2
P

d−2
2

, d−2
2

n (cos(θ))

= n1/2
(
1 +O

(
1
n

))
P

d−2
2

, d−2
2

n (cos(θ)).

The final claim of the lemma follows from the prior work and an expansion of [OlF, Chapter

12, Section 13]:

Y n,k(θ, ϕ) = (−1)keikϕn1/2
( θ

sin θ
)1/2

(
J|k|((n+ 1/2)θ) +O|k|(

1

n
) env J|k|((n+ 1/2)θ)

)
,

where env denotes the envelope of J|k| and θ ∈ (0, π/2). The asymptotics then follow exactly

as above, where the weaker error bound is due to the error only being in terms of J|k|. □

Our next aim is to introduce Besov spaces by utilizing the following proposition and to

obtain related dimension bounds for the graphs of continuous functions on the spheres.

Proposition 2.2 ([NPW, NPW2]). Let a ∈ C∞([0,∞)) satisfy supp a ⊂ [1/2, 2], |a(t)| >
c > 0 for t ∈ [3/5, 5/3], and a(t) + a(2t) = 1 if t ∈ [1/2, 1], and define

Φ0(t) := Z0(t), Φj(t) :=
∞∑
n=0

a(2−j+1n)Zn(t), t ∈ [−1, 1], j ≥ 1, and

Kj(cos θ) :=

j∑
i=0

Φi(cos θ).

Then for all j, k ≥ 0

(14) |Φj(cos θ)|+ |Kj(cos θ)| ≲d,k
2jd

(1 + 2jθ)k
,

and if f ∈ Lp for 1 ≤ p < ∞ and f ∈ C0 when p = ∞, then

f ∗ Kj
j→∞→ f in Lp.
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We define the smooth cut-off Besov spaces, [NPW], as:

∥f∥Bα
p,∞ := sup

j≥0
2jα∥P2jf∥Lp := sup

j≥0
2jα∥f ∗ Φj∥Lp .

With these preliminaries out of the way, using (14) it is then standard exercise in dyadic

decomposition to find the following characterization of Cα(Sd):

Theorem 2.3. For 0 < α < 1, if f ∈ Cα(Sd) then ∥f ∗ Kj − f∥∞ ≲ 2−jα. Conversely,

∥f ∗ Kj − f∥∞ ≲ 2−jα implies f ∈ Cα(Sd).

This theorem leads to

Theorem 2.4. The spaces Cα(Sd) and Bα
∞,∞(Sd) coincide for α ∈ (0, 1). In particular, if

f ∈ Bα
∞,∞(Sd), the fractal dimension of its graph must be bounded above by (d+ 1)− α.

For proofs of these theorems using Césaro means we refer the reader to [Hu]– the proof

of the above follows in the same manner, utilizing (14). In order to obtain a version of the

Deliu-Jawerth theorem for Sd we will need to introduce the spherical analogue of translation.

Definition 2.5. [DaXu, Prop 2.1.5] Let θ ∈ [0, π] and f ∈ L2(Sd). For x ∈ Sd, let S⊥
x :=

{y ∈ Sd : ⟨x, y⟩ = 0} be the equator in Sd with respect to x. The average shift operator Tθ is

defined as

Tθf(x) :=
1

ωd−1

∫
S⊥x

f(x cos θ + u sin θ)dσ(u).

For g : [−1, 1] → R, we have

f ∗ g(x) = ωd−1

ωd

∫ π

0

Tθf(x)g(cos θ)(sin θ)
d−1 dθ.

Tθf(x), as defined, is really an average of the values of f evaluated at all points y such

that the geodesic distance d(x, y) = θ. Consequently, it is also referred to in literature as the

average shift operator on Sd. It has all the properties we desire from a translation operator;

in addition to the convolution identity above, we have

Lemma 2.6. [DaXu, Pg. 32] For f ∈ Lp(Sd), 1 ≤ p < ∞ or f ∈ C0(Sd) for p = ∞,

∥Tθf∥Lp ≤ ∥f∥Lp , lim
θ→0+

∥Tθf − f∥Lp = 0.

Moreover, Tθ respects the symmetries of Sd by definition. We also need the following

counting lemma.

Lemma 2.7. Let θ ∈ [0, π]. For f : Sd → R continuous function,

∥Tθf − f∥L1(Sd) ≲ θd+1N (E, θ)
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where E is the graph of f , and N (E, θ) is the minimum number of balls of radius θ > 0

necessary to cover E.

Proof. Let us denote the cap of radius θ centered at x ∈ Sd by Θ = Θ(x). If y ∈ Θ then we

may bound

|f(x)− f(y)| ≲ θNx
θ ,

where Nx
θ is the minimum number of balls of radius θ required to cover the graph of f above

Θ. This is independent of y, so this must also hold for the average over y ∈ ∂Θ, and hence

|f(x)− Tθf(x)| ≲ θNx
θ .

We now decompose Sd into a finite number of Θ(xi) caps, each centered at xi. Under this

decomposition we find

∥f − Tθf∥L1 ≲
∫

θNx
θ dσ(x) ≲

∑
Θ(xi)

θ

∫
Θ(xi)

Nx
θ dσ(x)

≲
∑
Θ(xi)

θ

∫
Θ(xi)

Nxi
5θ dσ(x) ≲ θd+1

∑
Θ(xi)

Nxi
θ ≲ θd+1N(E, θ),

as desired. □

We are now ready to prove a key result that gives lower bounds for graph dimension. The

original theorem was proven by Deliu and Jawerth in [DeJa] for continuous functions T → R.
The proof we present below extends the ideas used in the proof given in [ErTz3, Theorem

2.24] to continuous functions Sd → R, after translating the integral over Sd into the integral

involving Tθ over the interval [0, π].

Theorem 2.8. For a continuous function f : Sd → R, the graph E of f has fractal dimension

D ≥ (d+ 1)− s provided that f /∈
⋃

ϵ>0B
s+ϵ
1,∞(Sd).

Proof. It suffices to prove if f is continuous and supj∈N 2
js∥f ∗Φj∥L1 = ∞ for some 0 < s < 1,

then the graph E of f has dimension D ≥ (d+ 1)− s.

Recalling Definition 2.5 on the operator Tθ, we rewrite ∥P2jf∥L1 (for j ≥ 1):

∥P2jf∥L1
x

∼
∥∥∥∥∫

Sd
Φj(⟨x, y⟩)[f(y)− f(x)] dσ(y)

∥∥∥∥
L1
x

∼
∥∥∥∥∫ π

0

Φj(cos θ)[Tθf(x)− f(x)](sin(θ))d−1 dθ

∥∥∥∥
L1
x

.

Let us consider the inner integral, and recall (14). Dyadically splitting θ and choosing

k > d+ s, we find by Lemma 2.7:

∥P2jf∥L1
x
≲

∫ π

0

|Φj(cos θ)|∥Tθf − f∥L1
x
θd−1 dθ
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≲
∫ π

0

2dj(1 + 2jθ)−kθ2dN (E, θ) dθ

≲
∞∑
ℓ=0

∫
2−ℓ−1<θ≤2−ℓ

2dj−2dℓ(1 + 2j−ℓ)−kN (E, 2−ℓ) dθ

≲
∞∑
ℓ=0

2dj−2dℓ−ℓ(1 + 2j−ℓ)−kN (E, 2−ℓ).

Multiplying by 2sj and taking the supremum in j, we find

∥f∥Bs
1,∞

≲
∞∑
ℓ=0

sup
j≥0

2dj−2dℓ−ℓ+sj(1 + 2j−ℓ)−kN (E, 2−ℓ) ≲
∞∑
ℓ=0

2−ℓ(d+1−s)N (E, 2−ℓ),

as the supremum is attained for j = ℓ (since k > d+ s). As this must diverge, we conclude

that N (E, 2−ℓ) ≳ 2ℓ(d+1−s)/ℓ2 infinitely often, and hence the claim follows. □

3. Talbot Effect On the Sphere

In this section we will prove theorems displaying fractal behavior of solutions to the linear

Schrödinger equation (1). The propagator of the Schrödinger equation (1) on Sd is given by

(15) eit△f =
∑
n

eitn(n+d−1)projnf,

where projnf is defined in (5) as the projection to eigenspace corresponding to the eigenvalue

n(n+ d− 1).

Remark 3.1. For dyadic N , we define the sharp cut-off Littlewood-Paley projection opera-

tors PN by

PN(f) =
∑

N≤|n|<2N

projnf = f ∗
( ∑

N≤|n|<2N

Zn

)
.

It suffices to obtain upper bounds for these projections as the projections with smooth cut-offs

are uniformly bounded in Lp spaces.

In addition to the results we presented in the previous section, we will make use of L4(Sd×
[0, 2π]) estimates of [BGZ, BGZ2]:

∥eit△f(x, t)∥L4
x,t(Sd×[0,2π]) ≲ε

∥f∥
H

1
8+ε(S2)

d = 2

∥f∥
H

d−2
4 +ε(Sd)

d ≥ 3,
(16)

where

∥f∥Hs(Sd) :=

√ ∑
N dyadic

N2s∥PNf∥2L2(Sd).
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Up to ε, the above estimates are optimal L4 bounds, see [BGZ2] and Remark 5.2. It’s worth

noting that what is known on Sd is much weaker than on Td. Specifically, [BoDe] obtained

the full gamut of Strichartz estimates for Td:

∥eit△Tdf(x, t))∥Lp
x,t(Td×[0,2π]) ≲ε

∥f∥
H

d
2− d+2

p +ε
(Td)

p ≥ 2(d+2)
d

∥f∥Hε(Td) 2 < p < 2(d+2)
d

.
(17)

Unlike (16), these estimates always include a region of p > 2 for which there is only an

ε-derivative loss. In Lemma 5.1 below, we obtain improved L4 bound with only ε loss when

restricted to zonal spherical harmonics.

The next lemma is standard. Specifically, it demonstrates the expected square root can-

cellation for weighted Weyl sums with decaying weights, see [ErTz3, ErSh, Hu].

Lemma 3.2. Consider the exponential sum
∑u

n=N ein
2t+inxanbn for x ∈ R. Assume a ∈ [0, 1]

and for each n ∈ N, bn satisfies

|bn| ≲
1

np
, |bn − bn−1| ≲

1

np+1
,

for some p ∈ R. It follows that for almost every t, we have for all N ∈ N:

sup
N≤u≤2N

sup
x∈R

∣∣∣∣ u∑
n=N

ein
2t+inx an bn

∣∣∣∣ ≲t N
1/2−p.(18)

Remark 3.3. The above factor of an is not important for many of our applications, but is

included because it makes the presentation of applications to functions supported on Gaussian

beams simpler.

With this out of the way, we’re ready to prove our first theorem.

Proof of Theorem 1.1. By Theorem 2.4, it suffices to prove that for almost all t, u(t, ·) belongs
to Bγ−

∞,∞. By Remark 3.1, it suffices to prove that

∥PN(u(t, x))∥L∞
x (Sd) ≲ N−γ+.

We write PN(u(x, t)) = fN ∗HN(x, t), where

(19) HN(cos θ, t) :=
∑

N<n≤2N

eitn(n+d−1)Zn(cos θ)

and the convolution is the spherical convolution. Using (4), we have (for 1
p
+ 1

q
= 1):

∥PN(u(t, x))∥L∞
x (Sd) ≲ ∥fN∥Lp(Sd) ∥HN(·, t)∥Lq

w([−1,1]) ,(20)

where ∥ · ∥Lq
w([−1,1]) is defined by (3).
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By Lemma 2.1, we have (by symmetry, θ ∈ [0, π
2
])

Zn(cos(θ)) = b+n (θ)e
inθ + b−n (θ)e

−inθ + E(θ, n),

where b±n satisfies (7) and hence also the conditions of Lemma 3.2 with N < n ≤ 2N , a = 1

and p depending on θ,N is

(21) p(θ,N) =

−d−1
2

θ ∈ [ 1
N
, π
2
]

−(d− 1) θ ∈ [0, 1
N
].

Now, by incorporating the phase factors from above into the exponential and using the

trivial estimate on the error, we see that Lemma 3.2 yields, for almost all t:

|HN(cos θ, t)| ≲t
Nd− 1

2

⟨Nθ⟩ d−1
2

.

Using this we have

∥HN(·, t)∥qLq
w([−1,1])

≲
∫ π

2

0

|HN(cos θ, t)|q sind−1 θ dθ

≲t

∫ π
2

0

N q(d− 1
2
)

⟨Nθ⟩q d−1
2

θd−1 dθ ≲ N q(d− 1
2
)−d +

N
dq
2
+ if 2 + 2

d−1
≥ q

N q(d− 1
2
)−d if q > 2 + 2

d−1
.

Together with (20) and the hypothesis ∥fN∥Lp ≲ N−( d
2
+s), we then have

∥Pn(u(·, t))∥L∞
x (Sd) ≲ ∥fN∥Lp ∥HN∥Lq

w([−1,1]) ≲ max
(
N−s+, Nd( 1

p
− 1

2)−
1
2
−s+

)
.

This then gives u(t, x) ∈ Cγ− for almost all t and γ = min{s, s + d+1
2

− d
p
, 1}. It also

implies the upper bound of (d+1)−γ on the fractal dimension of graph of u(t, x) for almost

every t.

For the lower bound, following the arguments of [ErSh], we see that the assumption on

∥fN∥Lp
x
and Sobolev embedding imply (d = 2)

∥fN∥L2
x
≲ N

2
p
−1∥fN∥Lp

x
≲ N

2
p
−2−s,

so that we find by (16)

∥⟨∇⟩−( 1
8
+ 2

p
−2−s)−u∥L4

x,t
≲ ∥⟨∇⟩−( 2

p
−2−s)−f∥L2

x
≲ 1.

Thus, for almost every time, t, we find

∥PN(u)∥L4
x
≲t N

( 1
8
+ 2

p
−2−s)+.
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We now assume that f ̸∈ Hs+2− 2
p , so that interpolation between the L1 and the L4 bound

gives

sup
N

Nγ∥PN(u)∥L1
x
= ∞,

for γ > 2− 2
p
+ 1

4
+ s. It follows by Theorem 2.8 that the fractal dimension of the graph of

u is bounded below by max
(

3
4
+ 2

p
− s, 2

)
for almost all t. □

Remark 3.4. The upper bound above is best when p = 2d
d+1

→ 2 as d → ∞. At this level,

the bound for HN begins to match the bound for the torus, see Theorem 6.1.

3.1. Specific Expansions on S2. In this subsection we explore dimension bounds for func-

tions supported on specific spherical harmonics in the case that d = 2. In particular, we will

focus primarily on functions supported on the Zonal harmonics and Gaussian beams, which

are of interest because they are the extremal harmonics in some sense (explored further in

Appendix 5). However, we also demonstrate results for more general expansions (of the same

form as Zonal and Guassian Beams) that follow from the same methods.

When d = 2, we have an explicit formula for the spherical harmonics of degree n (see for

example [DaXu, Section 1.6]):

Theorem 3.5. On S2, let θ, ϕ denote the azimuthal and polar angles respectively in spherical

coordinates ( 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π). For −n ≤ k ≤ n, Define

Y k
n (θ, ϕ) :=

√
(2n+1)(n−k)!

(n+k)!
P k
n (cos θ)e

ikϕ.(22)

Then {Y k
n : n ∈ N0,−n ≤ k ≤ n} forms an orthonormal basis of L2(S2).

By inductive construction, one can also obtain basis elements for L2(Sd) for d > 2, see

[Hu].

The Zonal harmonic of degree n, denoted3 Y 0
n , has an explicit form given by (13). In

particular, we find

(23) Y 0
n (θ, ϕ) =

√
2n+ 1Pn(cos θ),

where Pn is now the Legendre polynomial of degree n. Gaussian beams, denoted Y ±n
n , have

a similarly nice expression of the form

(24) Y ±n
n (θ, ϕ) =

√
(2n+ 1)

(
2n
n

)(∓1)n

2n
sinn(θ).

3We comment that when d > 2 these are denoted Yn. When d = 2 the spherical harmonics are usually

denoted as some variant of Y k
n for |k| ≤ n. The case that k = 0 corresponds to the Zonal harmonics on S2.
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Proof of Theorem 1.3. We will show for almost all t and N dyadic

∥PN(u(·, t))∥L∞ ≲ N−(p−1)+.

We use again Lemma 2.1 and summation-by-parts as in the proof of Theorem 1.1, noting

that bn = anb
±
n and a = 1 satisfies the hypothesis of Lemma 3.2 with

|bn| ≲
n

1
2
−p

⟨nθ⟩ 1
2

It follows that

∥Pn(u(·, t))∥L∞
x
≲ sup

θ

N1−p

⟨Nθ⟩ 1
2

≲ N1−p,

establishing the upper bound claimed.

In order to establish a lower bound we must refine the Strichartz estimate (16). This is

done in the appendix, Lemma 5.1. In particular, we find

∥u∥L4
x,t

≲ ∥f∥Hε ,

for any ε > 0. We now assume that f ̸∈ Hp− 1
2
+(S2). Interpolation as in Theorem 1.1 with

the improved L4 bound forces the dimension to be bounded below by

max
(
3−

(
p− 1

2

)
, 2
)
= max

(
7
2
− p, 2

)
. □

Remark 3.6. The above lower bound is only meaningful when 1 ≤ p ≤ 3
2
.

We can also easily extend the above upper bound to zonal harmonics on Sd by using the

full asymptotics of Lemma 2.1. In particular, we find Corollary 1.4 holds, whose proof follows

in the exact same way as above.

One doesn’t have to stop at just Zonal harmonics. Inded, Lemma 2.1 yields asymptotics

for Y k
n , under the assumption that k is fixed. Using these asymptotics we may establish

dimension bounds similar to Theorem 1.3.

Lemma 3.7. Let k be fixed and f(θ, ϕ) =
∞∑
n≥k

an Y
k
n (θ, ϕ). If for some 1 < p < 2 we have

|an| ≲ 1
np , and |an − an−1| ≲ 1

np+1

for all n ∈ N ∪ {0}, then for almost all t, u(x, t) ∈ C(p−1)−, and hence dimt(f) ≤ 4− p. If,

in addition, f ̸∈ Hp− 1
2
+(S2), then we also find dimt(f) ≥ max

(
15
4
− p, 2

)
.

Proof. The upper bound follows immedietly from Lemma 2.1, as in Theorem 1.3. The lower

bound similarly follows from interpolation using the Strichartz estimate (16). □
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Instead of fixing k, we also establish bounds when k = −n, which corresponds to the case

of Guassian beams.

Theorem 3.8. Let f(x) = f(θ, ϕ) =
∞∑
n=0

anY
−n
n (θ, ϕ). If for some 3

4
< p < 5

4
we have,

|an| ≲
1

np
, and |an − an−1| ≲

1

np+1

for all n ∈ N ∪ {0}, then for almost all t and dimt(f) ≤ 15
4
− p.

If, in addition, f /∈ Hp−1/2+, then dimt(f) ≥ max(13
4
− p, 2).

Proof. Recall that (referencing Theorem 3.5)

Y −n
n (θ, ϕ) =

√
(2n+ 1)(2n)!P−n

n (cos θ)e−inϕ

=
√

2n+1
(2n)!

(−1)nP n
n (cos θ)e

−inϕ

Furthermore, using the closed form formula for associated Legendre polynomial [Fö], we

have:

P n
n (cos θ) = (−1)n 2n n!

(
n−1/2

n

)
(1− cos2 θ)n/2 = (−1)n

n!

2n
(
2n
n

)
(sin θ)n

We can now rewrite u(x, t) using this above information:

u(θ, ϕ, t) =
∞∑
n=0

ein(n+1)t anY
−n
n (θ, ϕ)

=
∞∑
n=0

an e
in(n+1)t

√
2n+1
(2n)!

P n
n (cos θ)e

−inϕ

=
∞∑
n=0

ein(n+1)te−inϕ sinn(θ) an
√
2n+ 1

√(
2n
n

) 1

2n
.

In order to obtain an upper bound on the fractal dimension of the graph of u(x, t), we

need to estimate

∥PN(u(·, t))∥L∞
x
= sup

(θ,ϕ)∈S2

∣∣∣∣ ∑
N<n≤2N

ein(n+1)te−inϕ sinn(θ) an
√
2n+ 1

√(
2n
n

) 1

2n

∣∣∣∣
for N dyadic.

Once again, Lemma 3.2 can be used for fixed θ with a = sin θ and bn =

an
√
2n+ 1

√(
2n
n

)
1
2n
. We note that by Stirling’s approximation (8), we find√(

2n
n

)
=

√
22n√
n

(
c+O( 1

n
)
)
.

Consequently

|bn| ≲
∣∣∣∣an √2n+ 1

√
22n√
n

1

2n

∣∣∣∣ ≲ |ann1/4|.
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By the assumption on an, we obtain for bn:

|bn| ≲
1

np−1/4
; |bn − bn−1| ≲

1

np+3/4
.(25)

This leads to the following for almost all t:

sup
θ∈[0,π/2]
ϕ∈[0,2π]

∣∣∣∣ ∑
N<n≤2N

ein(n+1)te−inϕ sinn(θ) an
√
2n+ 1

√(
2n
n

) 1

2n

∣∣∣∣ ≲ N1/2+

Np−1/4
= N−(p−3/4)+.

Given the assumption on p, this implies the solution u(x, t) is in C(p−3/4)− for almost all

t, thus the fractal dimension of its graph is bounded above by 3−
(
p− 3

4

)
= 15

4
− p.

As there is no hope of improving the Strichartz estimate for these harmonics, the lower

bound follows by the same interpolation argument as Theorem 1.1 and Lemma 3.7. □

Remark 3.9. Similar statements are available for combinations of specific harmonics, but

depend greatly on the specific form of the eigenfunction. Because of this it seems difficult to

obtain a result akin to Theorem 6.4 for S2.

Remark 3.10. The above corollary isn’t unique to Y ±n
n – a similar statement will hold in

the exact same way for any function supported on {Y g(n)
n }n with

∣∣∣g(n)n

∣∣∣ → 1 as n → ∞.

We can say more than the above theorem when off of the equator. Specifically, because

of the factor of sinn(θ), we find that all functions supported on the Gaussian beams with

polynomially growing coefficients is C∞
x,t(Sδ) for

Sδ =
{
(θ, ϕ) ∈ S2 : θ ̸∈

(
π
2
− δ, π

2
+ δ

)}
,

and 0 < δ < π
2
. This is recorded in the next corollary.

Corollary 3.11. Let α, β ∈ R, 0 < δ < π
2
, and f(x) =

∞∑
n=0

anY
−n
n (x) for some scalars an

with |an| ≲ nα. If µ : R 7→ R satisfies |µ(x)| ≲ |x|β and

u(x, t) = eitµ(−△)f =
∞∑
n=0

eitµ(n(n+1))anY
−n
n (x),

then u ∈ C∞
x,t(Sδ). It follows that the dimension of u(Sδ, t) is exactly 2 for all t.

Proof. This is fairly trivial. Let x = (θ, ϕ) and k, ℓ ∈ N. We then find

|∂k
t △ℓ u(x, t)| =

∣∣∣∣∣
∞∑
n=0

eitµ(n(n+1))µ(n(n+ 1))knℓ(n+ 1)ℓan · Y −n
n (x)

∣∣∣∣∣
≲

∞∑
n=0

|n|2k+2β+α+ 1
4 sinn

(π
2
− δ

)
< ∞,

uniformly for x ∈ Sδ. □
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4. Nonlinear Smoothing for the Zonal Cubic NLS on Sd

In this section we derive a smoothing statement for the cubic NLS on Sd restricted to

Zs(Sd) :=
{
f ∈ Hs(Sd) : f =

∞∑
n=0

anYn

}
.

Here an = f̂(n) = F(f)(n) = 1
ωd

∫
Sd f(x)Yn(x) dσ(x).

We have Parseval’s identity:
∞∑
n=0

f̂(n)¯̂g(n) =
1

ωd

∫
Sd
f(x)ḡ(x)dσ(x).

We also define

(26) κ(n, n1, ..., nj) := F
( j∏

i=1

Yi

)
(n) =

1

ωd

∫
Sd
Yn(x)

j∏
i=1

Yi(x) dσ(x).

Note that κ is independent of the order of the indices. By [Ga], κ ≥ 0 for any choice of

indices, and κ = 0 if any index is strictly greater than the sum of the others. Finally, by the

Parseval’s identity above, we have∑
n

κ(n, n1, ..., nj)κ(n,m1, ...,mℓ) = κ(n1, ..., nj,m1, ...,mℓ).

Remark 4.1. These facts about κ allows one to perform multilinear estimates in the standard

way– that is, by assuming positivity of either the Fourier transforms or the space-time Fourier

transforms and pulling absolute values in. The non-negativity specifically guarantees access

to Parseval and Plancherel after pulling in the absolute values.

We consider solutions to

(27)

i∂tu+△Sdu± |u|2u = 0

u(x, 0) = u0(x) ∈ Zs(Sd).

As a consequence of Lemma 5.1 and (16) we find the following proposition.

Proposition 4.2. For s > d−2
2

the equation (27) is locally well-posed with a time of existence

T = T (∥u0∥Hs) > 0.

Before moving on to the statement of the result, we first describe the nature of the result,

leaving the historical background of the result to [ErTz3, Mc]. The linear group of the NLS

is an isometry on L2 based spaces, and hence we can not expect the linear group to present

any smoothing behaviour, i.e., it cannot be in an higher index L2-based Sobolev space for

any t. By the Duhamel representation, we have

u(t, x)− eit△Sdu0(x) = ∓
∫ t

0

ei(t−s)△Sd |u|2(s, x)u(s, x) ds.
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One could expect such a statement to possibly hold for the nonlinear part of the evolution,

i.e., the right hand side of the formula above. On many periodic domains this, too, fails. This

is best seen through the result of [ErTz2], which demonstrates that on T one has a u∥u0∥2L2
x

term sitting in the non-linearity arising from resonances. This automatically precludes extra

smoothness of the integral term in the Duhamel representation. The fix to this is to introduce

a phase rotation in order to remove this term from the differential equation, modifying the

equation to its Wick reordering. Indeed, the correct statement is then

u− e
it
(
△T+

1
π
∥u0∥L2

x(T)

)
u0 ∈ C0

(
[0, T ), Hs+ε

x (T)
)
,

for 0 ≤ ε < min(2s, 1/2), [ErTz2], which brings us back to the statement of Theorem 1.5.

Proof of 1.5. The proof of Theorem 1.5 follows from an application of Lemmas 4.11, 4.12,

and 4.13 below to the Duhamel representation associated to (40), together with the local

well-posedness bound for 0 ≤ t < T . □

Remark 4.3. In particular, γ is a real function depending on the solution u, so that the

above theorem states that the solution, up to a phase rotation of the initial data, is in a

smoother space than the initial data.

As an application, we prove dimension bounds for the nonlinear evolution.

Proof of 1.6. We first write

e−∓i
∫ t
0 γ(s;u) dsu = eit△Sdf + v,

where by Theorem 1.3 and Corollary 1.4, we find that

eit△Sdf ∈ Cp− d
2
−.

Moreover, v ∈ Zp−1/2+ε− for some ε ≥ 1/2 when p > (d + 1)/2. It follows that v ∈ Cp− d
2
−.

Combining these two facts, we see that u ∈ Cp− d
2
−, and hence

dimt(u) ≤ (d+ 1)−
(
p− d

2

)
. □

Before proceeding to the proof of Theorem 1.5 we first derive a simple result that will

guide our analysis. The restriction on the indices are due to the fact that κ(n1, n2, n3, n) = 0

if any of the indices is strictly greater than the sum of the others. This restriction replaces

the relation n = n1 − n2 + n3 that one sees on the torus or real line.

Lemma 4.4. Let n1, n2, n3, n ∈ N ∪ {0}, n1 ≥ n3,

max(n1 − n2 − n3, n2 − n1 − n3, 0) ≤ n ≤ n1 + n2 + n3,
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and define4

H(n1, n2, n3, n) := n(n+ d− 1)− n1(n1 + d− 1) + n2(n2 + d− 1)− n3(n3 + d− 1).

Then at least one of the following must hold.

(1) n = n1,

(2) ⟨n1⟩⟨n2⟩⟨n3⟩ ≳ n3/2,

(3) |Hn| ≳ max(n1, n2)|n− n1|.

Proof. The proof is straightforward. We assume that all of the above are false. We first

suppose that n2 ≫ n1, so that the negation of the final item is immediately violated, as

Hn ≳ n2
2. We now assume n1 ≳ n2, which also implies n1 ≳ n. Therefore the negation of

item 2 implies that n2, n3 ≤ ⟨n2⟩⟨n3⟩ ≪ n1/2 ≲ n
1/2
1 as well as n1 ≲ n. Combining these

facts we see that

|Hn| = |(n+ n1 + d− 1)(n− n1) + n2(n2 + d− 1)− n3(n3 + d− 1)| ∼ n1|n− n1|,

as the second two summands are, in magnitude, ≪ n. This again contradicts the negation

of the final item, completing the proof. □

The second case in Lemma 4.4 corresponds to resonances, which must be handled sepa-

rately. In order to do that we need the following lemmas.

Lemma 4.5 (Szegö, [Sz, Theorem 8.21.13]). Let 0 < c < π be fixed. Then (uniformly) for

θ ∈ [ c
n
, π − c

n
], we have

P
( d−2

2
, d−2

2
)

n (cos θ) = n− 1
2k(θ)

(
cos(Mθ + γ) + O(1)

n sin θ

)
,

where Mn = n+ d−1
2
, γ = −d−1

2
· π
2
, and

k(θ) = 2
d−2
2 π− 1

2 sin(θ)−
d−1
2 .

In the remaining region we find that |P ( d−2
2

, d−2
2

)
n (cos θ)| ∼ n

d−2
2 .

Lemma 4.6. Let 0 < n1, n2 ≤ n and d ≥ 2. Then

1

ωd

∫
Sd
Yn1Yn2Y

2
n dσ =

1

πωd

∫ π

0

Yn1(θ)Yn2(θ) dθ +O
(

(n1n2)
d−1
2 +

n

)
.

Moreover, for n1 ≥ n2 ≥ n3 ≥ n4 we have the estimate

1

ωd

∫
Sd
Yn1Yn2Yn3Yn4 dσ = O

(
(n3n4)

d−2
2

+
)
.

4H(n1, n2, n3, n) will often be abbreviated as Hn.
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Remark 4.7. Before moving on to the proof, we remark that the integrals on two sides are

with respect to different measures; the one on the right hand side lacks the factor of sind−1 θ

that arises due to the measure dσ.

Proof. We begin first with a calculation in an attempt to understand the action of

(Yn(θ))
2 sind−1(θ). Let

α(n, d) =
(2n+ d− 1)Γ(n+ d− 1)Γ(n+ 1)

Γ(n+ d
2
)2

= (2n+ d− 1)
(
1 +O

(
1
n

))
(28)

by Stirling’s approximation (8). Then, for θ ∈
[
1
n
, π − 1

n

]
, Lemma 4.5 and (28) give

Yn(θ)
2 sind−1(θ) =

α(n, d)

nπ

(
cos

((
n+ d−1

2

)
θ − (d−1)π

4

)
+ O(1)

n sin θ

)2

=
2

π
cos

((
n+ d−1

2

)
θ − (d−1)π

4

)2

+O
(

1
n sin(θ)

)
.

A calculation for the cosine term above shows that it has a very strong localization near its

mean:

(29)

∫ b

a

2

π
cos

((
n+ d−1

2

)
θ − (d−1)π

4

)2

dθ = 1
π
(b− a) +O

(
1

d+n

)
.

We then let

(30) ω(θ;n, d) = Yn(θ)
2 sind−1(θ)− 1

π
,

and remark that for any 1
n
< a < b < π − 1

n
, ω satisfies

(31)

∫ b

a

ω(θ;n, d) dθ = O
(

1
n1−

)
,

where the implicit constants depend (harmlessly so) on the fixed d and the ε hidden in the

1− notation. We now note that, by symmetry, it suffices to consider

(32)

∫ π
2

0

Yn1Yn2(Yn)
2 sin(θ)d−1 dθ,

for 0 < n2 ≤ n1 ≤ n.

In what is to follow, our main tool will be Lemma 4.5. On [0, 1
n
] we find that

Yn1Yn2(Yn)
2 = O

(
(n1n2)

d−1
2 nd−1

)
,

so that ∫ 1
n

0

Yn1Yn2(Yn)
2 sin(θ)d−1 dθ ≲ (n1n2)

d−1
2 nd−1

∫ 1
n

0

sin(θ)d−1 dθ ≲
(n1n2)

d−1
2

n
,(33)

where the same inequality also holds for
∫ 1/n

0
Yn1Yn2dθ.
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On [ 1
n
, π
2
], we must remove the mean. Specifically, we rewrite∫ π

2

1
n

Yn1Yn2(Yn)
2 sin(θ)d−1 dθ =

∫ π
2

1
n

Yn1Yn2ω(θ;n, d) dθ +
1

π

∫ π
2

1
n

Yn1Yn2 dθ.

Therefore, it remains to prove that∣∣∣ ∫ π
2

1
n

Yn1Yn2ω(θ;n, d) dθ
∣∣∣ ≲ (n1n2)

d−1
2

n
.

To utilize the average bound on ω(θ;n, d), we need to apply integration by parts, for which

we need the Jacobi polynomial identity [Sz, Equation 4.7.14]:

(34) ∂θP
d−2
2

, d−2
2

n (cos(θ)) = −n+d−1
2

sin(θ)P
d
2
, d
2

n−1(cos(θ)),

from which, using Lemma 4.5, we find the following bounds for Yn and ∂θYn

|Yn| ≲
n

d−1
2

⟨θn⟩ d−1
2

, |∂θYn| ≲
n

d+3
2 θ

⟨θn⟩ d+1
2

.(35)

Applying integration by parts we see∫ π
2

1
n

Yn1Yn2ω(θ;n, d) dθ = Yn1(π/2)Yn2(π/2)

∫ π
2

1
n

ω(s;n, d) ds(36)

−
∫ π

2

1
n

∂θ (Yn1Yn2)

∫ θ

1
n

ω(s;n, d) ds dθ.

By (31), we bound this by

≲
1

n1− +
n

d−1
2

1 n
d−1
2

2

n1−

∫ π
2

1
n

n1

⟨θn1⟩
d−1
2 ⟨θn2⟩

d−1
2

dθ ≲
(n1n2)

d−1
2

n1− .

To obtain the last inequality, consider the integrals on ( 1
n
, 1
n1
), ( 1

n1
, 1
n2
), ( 1

n2
, π
2
) separately. □

Writing the nonlinearity, |u|2u, on the Fourier side, u =
∑∞

n=0 ûnYn, we have

F(|u|2u)(n) =
∑

n1,n2,n3

ûn1ûn2ûn3κ(n1, n2, n3, n),

where κ is as in (26). We split the resonant portion, n1 = n or n3 = n, into

2ûn

∑
n2,n3

ûn2ûn3κ(n, n, n2, n3)− û2
n

∑
n2

ûn2κ(n, n, n2, n),

where the second term is not only, of course, easy to handle down to the local well-posedness

level, but also presents another large frequency to aid in smoothing. The first, however, is

of the form

ûn
2

πωd

∑
n2,n3

ûn2ûn3

∫ π

0

Yn2(θ)Yn3(θ) dθ + smoother,
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by Lemma 4.6. The first of these terms is analagous to the ∥u∥L2
x
term that appears in the

smoothing statement of [ErTz2], in that it is ûn multiplied by a real function of time and

the solution. Motivated by this, we define the change of variables given by

(37) ûn = e±iγ(t;v)v̂n, where

(38) γ(t; v) =
2

πωd

∑
k,ℓ

v̂k(t)v̂ℓ(t)

∫ π

0

Yk(θ)Yℓ(θ) dθ,

which acts as a phase rotation dependent only on time and the solution. Moreover, because

of the conjugate in the definition we see that this is easily invertible. The resulting equation

is then given by

(39)

i∂tv +△Sdv ± v(|v|2 − γ(t; v)) = 0

v(x, 0) = u0(x).

Before we consider the Fourier transform of the new nonlinearity, N(v) := ±v(|v|2−γ(t; v)),

we consider the sets given in Lemma 4.4 and define:

Λ0(n) = {(n1, n2, n3) ∈ N3
0 : n1 = n or n3 = n}

Λ1(n) = {(n1, n2, n3) ∈ N3
0 \ Λ0(n) : ⟨n1⟩⟨n2⟩⟨n3⟩ ≳ n3/2}

Λ2(n) = {(n1, n2, n3) ∈ N3
0 \ (Λ0(n) ∪ Λ1(n)) : |Hn| ≳ max(n1, n2, n3)|n−max(n1, n3)|}.

We note that these sets are disjoint for all n ∈ N0 and that these sets directly correspond to

frequency configurations highlighted in Lemma 4.4. In particular, the set Λ2(n) contains

the indices when the phase, Hn, is large. In order to use the fact that we have large

modulation, we need to apply differentiation by parts for the contribution of these terms.

Before proceeding, we note that we’ve truncated the summation notation, opting to drop

the (n1, n2, n3) ∈ Λi(n) in favor of simply stating Λi(n), as there is no confusion.

The Fourier coefficients of the nonlinearity, N(v) := ±v(|v|2 − γ(t; v)), are given by

N̂(v)(n) = ±2v̂n
∑
n2,n3

v̂n2 v̂n3

(
κ(n, n, n2, n3)−

1

πωd

∫ π

0

Yn2(θ)Yn3(θ) dθ

)
∓ v̂2n

∑
n2

v̂n2κ(n, n, n2, n)±
∑
Λ1(n)

v̂n1 v̂n2 v̂n3κ(n, n1, n2, n3)±
∑
Λ2(n)

v̂n1 v̂n2 v̂n3κ(n, n1, n2, n3)

=: N̂0,1(v)(n) + N̂0,2(v)(n) + N̂1(v)(n) + N̂2(v)(n).

By differentiation by parts, applied as in [EGT, Proposition 6.1] only to N2, the solution of

(39) satisfies

(40) i∂t
(
e−it∆v − e−it∆B(v)

)
= −e−it∆

(
N0,1(v) +N0,2(v) +N1(v) +N2,1(v) +N2,2(v)

)
,
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where

B̂(v)(n) = ±i
∑
Λ2(n)

1

Hn

v̂n1 v̂n2 v̂n3κ(n, n1, n2, n3),

N̂2,1(v)(n) = ±2i
∑
Λ2(n)

1

Hn

ŵn1 v̂n2 v̂n3κ(n, n1, n2, n3),

N̂2,2(v)(n) = ∓i
∑
Λ2(n)

1

Hn

v̂n1ŵn2 v̂n3κ(n, n1, n2, n3).

Here

w = ieit∆[∂t(e
−it∆v)] = −N(v) = ∓v(|v|2 − γ(t; v)).

A priori estimates for the terms B(v), N1(v), N2,1(v), andN2,2(v) will be given in Lemma 4.11

below. The term N0,1(v) will be estimated in Lemma 4.12, and the term N0,2(v) in

Lemma 4.13.

The following proposition is a repeatedly used application of Young’s inequality (or just

Cauchy-Schwarz), which is best to state once and use by reference.

Proposition 4.8. Let 0 ≤ δ ≤ 1. Then for any {an}, {bm} we have for any η > 1−δ
2
,∣∣∣ ∑

n,m≥0

anbm
⟨n−m⟩δ

∣∣∣ ≲ ∥an⟨n⟩η∥ℓ2n∥bm⟨m⟩η∥ℓ2m .

Before proceeding, we define the space within which the wellposedness arguments are

done– the standard Bourgain space adapted to Sd:

∥u∥Xs,b := ∥⟨n⟩s⟨τ + n(n+ d− 1)⟩b|Fx,tu(n, τ)|∥L2
τ ℓ

2
n
,

∥u∥Xs,b
T

:= inf
w|[0,T ]=u|[0,T ]

∥w∥Xs,b .

An easy consequence of the definition of these spaces and Proposition (4.8) is that the

phase rotation (37) is well defined. That is,
∫ t

0
γ(s, v) ds is finite for v ∈ X

d−2
2

+,1/2+:

Proposition 4.9. For 0 < t < T , we have

(41)
∣∣ ∫ t

0

∑
k,ℓ

v̂k(s)v̂ℓ(s)

∫ π

0

Yk(θ)Yℓ(θ) dθ ds
∣∣ ≲ ∥v∥2

X
d−2
2 +,1/2+

,

where the implicit constant depends on T only.

Proof. We first note that by (35) we have
∫ π

0
Yk(θ)Yℓ(θ) dθ = O((kℓ)

d−2
2

+). Therefore the

contribution of the terms k = ℓ is bounded by T∥v∥2
C0

t∈[0,T ]
H

d−2
2 +

x

, which suffices. For the terms

k ̸= ℓ, by Plancherel, and noting that |χ̂[0,t](τ)| ≲ 1
⟨τ⟩ with an implicit constant depending

on T only, we have the bound
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∑
k ̸=ℓ

∫
R2

|Fx,tv(ℓ, τ1)||Fx,tv(k, τ)|(kℓ)
d−2
2

+

⟨τ − τ1⟩
dτ1dτ

≲ ∥v∥2
X

d−2
2 +,1/2+

[∑
k ̸=ℓ

∫
R2

dτ1dτ

⟨τ − τ1⟩2⟨τ − k(k + d− 1)⟩1+⟨τ1 − ℓ(ℓ+ d− 1)⟩1+
]1/2

≲ ∥v∥2
X

d−2
2 +,1/2+

[∑
k ̸=ℓ

1

⟨k(k + d− 1)− ℓ(ℓ+ d− 1)⟩1+
]1/2

≲ ∥v∥2
X

d−2
2 +,1/2+

.

In the second inequality we used Cauchy-Schwarz in all variables and the definition of Xs,b

norm. □

We also need another proposition which is a bilinear Strichartz estimate that follows from

(5.1) and the bilinear form of (16), see [BGZ2, Proposition 4.3].

Proposition 4.10. For N ≥ M dyadic and all ε > 0, we have

∥PN(η)PM(ν)∥L2
t∈[0,2π]

L2
x
≲ M

d−2
2

+ε∥PN(η)∥X0,1/2−∥PM(ν)∥X0,1/2− ,

and hence for any α, β ≥ 0 satisfying α + β > d−2
2
, we have

∥ην∥L2
t∈[0,2π]

L2
x
≲ ∥η∥Xα,1/2−∥ν∥Xβ,1/2−

The rest of this section consists of the required estimates for the terms appearing in (40).

Lemma 4.11. Let d ≥ 2, s > d−2
2
, and 0 ≤ ε < 1

2
min

(
s− d−2

2
, 2
)
, then

(42) ∥N2,1(v)∥Xs+ε,−1/2+
T

+ ∥N2,2(v)∥Xs+ε,−1/2+
T

≲ε ∥v∥5Xs,1/2+
T

,

(43) ∥N1(v)∥Xs+ε,−1/2+
T

≲ε ∥v∥3Xs,1/2+
T

,

(44) ∥B(v)∥C0
t H

s+ε
x

≲ε ∥v∥3C0
t H

s
x
.

Proof. We first handle the term N2,1(v), neglecting the term N2,2(v) as it is proved similarly.

We then split into when we have v|v|2 and vγ(t; v), separately.

When we have v|v|2, using the restriction imposed by Λ2(n), we have

|Hn| ≳ max(n1, n2, n3)|n−max(n1, n3)|.

Similarly, we find by the disjointness of Λi(n) for i ∈ {1, 2} and the fact that at least one

nj ≳ n for j ∈ {1, 2, 3} that ⟨ni1⟩⟨ni2⟩ ≪ n1/2 for some {i1, i2} ⊂ {1, 2, 3} and i1 ̸= i2. We

now ignore the presence of conjugates5 and consider two cases:

i) {n2, n3} = {i1, i2} ii) {n1, n3} = {i1, i2}.

5This doesn’t create any issues since in Proposition 4.10 we can replace η and/or ν with their conjugates

on the left hand side of the inequalities.
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In the first case we find that n1 ∼ n, and hence |Hn| ≫ n1 ≳ ⟨n2⟩⟨n3⟩. Relabeling

Fx,t(φ)(n, τ) = |Fx,t(v)(n, τ)| and Fx,t(ν)(n, τ) = Fx,t

(
φ3

)
(n, τ)

and noting that

⟨n⟩ε⟨n2⟩
d
2
+⟨n3⟩

d
2
+

|Hn|⟨n2⟩s⟨n3⟩s
≲ ⟨n2⟩

d
2
−s−1+ε+⟨n3⟩

d
2
−s−1+ε+ ≲ 1

for ε < max
(
s− d−2

2
, 1
)
, we see that it is sufficient bound∥∥∥F−1

n

( ∑
Λ2(n)

⟨n1⟩sν̂n1⟨n2⟩s−
d
2
+φ̂n2⟨n3⟩s−

d
2
+φ̂n3κ(n, n1, n2, n3)

)∥∥∥
X

0,−1/2+
T

.

By using the positivity of the space-time Fourier transforms, we may expand the summation

from Λ2(n) to N3
0, use

⟨n1⟩sν̂n1 ≲ ̂[φ2Js
xφ]n1

,

invoke duality for w ∈ X0,1/2−, and apply Parseval’s to find∥∥∥∥F−1
n

( ∑
(n1,n2,n3)∈N0

⟨n1⟩sν̂n1⟨n2⟩s−
d
2
+φ̂n2⟨n3⟩s−

d
2
+φ̂n3κ(n, n1, n2, n3)

)∥∥∥∥
X

0,−1/2+
T

≲
∫
R

∫
Sd

∣∣wφ2Js
xφ

(
J
s− d

2
+

x φ
)2∣∣ dtdσ(x) ≲ ∥wφ2Js

xφ∥L1
x,t
∥Js− d

2
+φ∥2L∞

t,x

≲ ∥wφ∥L2
x,t
∥φJs

xφ∥L2
x,t
∥φ∥

X
s,1/2+
T

≲ ∥v∥5
X

s,1/2+
T

,

by the bilinear L2 estimate (Proposition 4.10) and Sobolev embedding.

In the second case, {n1, n3} = {i1, i2}, we have n2 ∼ n and n
1/2
2 ≳ ⟨n1⟩⟨n3⟩. In particular,

|Hn| ≳ n2 (in fact we have |Hn| ≳ n2
2, but we only use n2 in order for the argument to handle

the case that n3 ∼ n). Therefore

⟨n⟩ε

|Hn|
≲

1

n1−ε
2

≲
1

⟨n1⟩2−2ε⟨n3⟩2−2ε
,

we expand the summation from Λ2(n) to N3
0, and find:

≲

∥∥∥∥F−1
n

( ∑
(n1,n2,n3)∈N0

⟨n1⟩2ε−2ν̂n1⟨n2⟩sφ̂n2⟨n3⟩2ε−2φ̂n3κ(n, n1, n2, n3)

)∥∥∥∥
X

0,−1/2+
T

(45)

Note that

ν̂n =
∑

n1,n2,n3

φ̂n1φ̂n2φ̂n3κ(n, n1, n2, n3).

By the support condition of κ and symmetry, it suffices to consider the cases n ≪ n1 ≈ n2 ≳

n3 and n ≈ n1 ≳ n2, n3. Denoting the contributions of these terms as νh, νℓ, respectively,

we see that

(46) F(Jα
x ν

h)(n) ≲ F [(Jα/2
x φ)2φ](n), for α ≥ 0, and
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(47) F(Jα
x ν

ℓ)(n) ≲ F [(Jα
xφ)φ

2](n), for all α ∈ R.

Using these we estimate the contributions of νh and νℓ to (45) as follows. For νh, using (46)

with α = d+ 2ϵ− 2+, and duality, it suffices to bound∫
R

∫
Sd

∣∣wJ−d−
x [φ(J

ε+ d−2
2

+
x φ)2]Js

xφJ
2ε−2
x φ

∣∣ dtdσ(x)
≤ ∥wJ2ε−2

x φ∥L2
x,t

∥∥J−d−
x [φ(J

ε+ d−2
2

+
x φ)2]

∥∥
L2
tL

∞
x
∥Js

xφ∥L∞
t L2

x

≲ ∥w∥X0,1/2−∥φ∥2Xs,1/2+

∥∥φ(Jε+ d−2
2

x φ)2
∥∥
L2
tL

1
x
.

In the last step we used the bilinear L2 estimate and sobolev embedding. The following

inequality finishes the proof for the contribution of νh:∥∥φ(Jε+ d−2
2

+
x φ)2

∥∥
L2
tL

1
x
≤ ∥φJε+ d−2

2
+

x φ∥L2
t,x
∥Jε+ d−2

2
+

x φ∥L∞
t L2

x
≲ ∥φ∥3Xs,1/2+ .

Above we used the bilinear L2 estimate and that ϵ < s− d−2
2
.

For the contribution of νℓ to (45), using (46) with α = 2ϵ−2, duality, bilinear L2 estimate,

and Sobolev embedding, we have the required bound:∫
R

∫
Sd

∣∣wφ2J2ε−2
x φJs

xφJ
2ε−2
x φ

∣∣ dtdσ(x)
≤ ∥wφ∥L2

x,t
∥φJs

xφ∥L2
x,t
∥J2ε−2

x φ∥2L∞
x,t

≲ ∥w∥X0,1/2−∥φ∥5Xs,1/2+ .

We now consider the contribution of vγ(t; v) to N2,1(v). Recall that

γ(t; v) =
2

πωd

∑
k,ℓ

v̂k(t)v̂ℓ(t)

∫ π

0

Yk(θ)Yℓ(θ) dθ.

We first need to understand the Fourier transform of γ in t. Defining φ as above and noting

that (35) yields
∫ π

0
YkYℓ dθ = O((kℓ)

d−2
2

+), we have (for each n)

∣∣Ft(γ(t; v))(τ)
∣∣ ≲ ∫ ∑

k ̸=ℓ<n

Fx,t(φ̄)(k, τ1)Fx,t(φ)(ℓ, τ − τ1)(kℓ)
d−2
2

+ dτ1

+

∫ ∑
max(k,ℓ)≥n

k ̸=ℓ

Fx,t(φ̄)(k, τ1)Fx,t(φ)(ℓ, τ − τ1)(kℓ)
d−2
2

+ dτ1 + Ft(∥φ∥2
H

d−2
2 +

x

)

= Ft

( ∑
k ̸=ℓ<n

̂̄φkφ̂ℓ(kℓ)
d−2
2

+ +
∑

max(k,ℓ)≥n
k ̸=ℓ

̂̄φkφ̂ℓ(kℓ)
d−2
2

+ + ∥φ∥2
H

d−2
2 +

x

)
(τ)

=: Ft

(
γ1,n + γ2,n + ∥φ∥2

H
d−2
2 +

x

)
(τ) =: Ft(Γn)(τ),

where Fx,t(φ̄)(k, τ1) = Fx,t(φ)(k,−τ1) ≥ 0. With this bound the contribution of vγ(t; v)

boils down to estimating
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(48)
∥∥∥F−1

n

( ∑
Λ2(n)

⟨n⟩s+εΓn

|Hn|
φ̂n1

̂̄φn2
φ̂n3κ(n, n1, n2, n3)

)∥∥∥
X0,−1/2+

=

∥∥∥∫ ∑
Λ2(n)

⟨n⟩s+εFt(Γn)(τ0)Fx,tφ(n1, τ1)Fx,tφ̄(n2, τ2)Fx,tφ(n3, τ3)

⟨τ + n(n+ d− 1)⟩ 1
2
−|Hn|

κ(n, n1, n2, n3)dτ1dτ2dτ3

∥∥∥
L2
τ ℓ

2
n

,

where τ0 = τ − τ1 − τ2 − τ3.

For the contribution of ∥φ∥2
H

d−2
2 +

x

to (48), noting that n ≲ max(n1, n2, n3),
nε

|Hn| ≲ 1, and

using duality, it suffices to observe that∥∥wφ2Jsφ∥φ∥2
H

d−2
2 +

x

∥∥
L1
x,t

≲ ∥wφ∥L2
x,t
∥φJsφ∥L2

x,t
∥φ∥2

C0
t H

d−2
2 +

x

≲ ∥w∥X0,1/2−∥φ∥5
Xs, 12+

.

For the contribution of γ1,n, first note that (since k, ℓ ≤ n and |Hn| ≳ n)

nε(kℓ)
d−2
2

+

|Hn|
≲ (kℓ)s−

1
2
−,

for ε < 1
2
min

(
s− d−2

2
, 2
)
. Therefore, using Proposition 4.8 in the k, ℓ sums with δ = 0, we

see that
⟨n⟩εΓn

|Hn|
≲ ∥φ∥2Hs

x
.

The bound then is identical to the contribution of ∥φ∥2
H

d−2
2 +

x

above.

To handle the contribution of the γ2,n term, we consider two subcases:

|Hn| ≳ (k + ℓ+ d− 1)|k − ℓ| and |Hn| ≪ (k + ℓ+ d− 1)|k − ℓ|.

In the first case, we recall that max(k, ℓ) ≳ n, k ̸= ℓ, and hence

(49)
⟨n⟩ε(kℓ) d−2

2

|Hn|
≲

(kℓ)
d−2
2

|k − ℓ|
for ε < 1, so that by Proposition 4.8 with δ = 1 we find

(50)
⟨n⟩εΓn

|Hn|
≲ ∥φ∥2Hs

x
,

for s > d−2
2
. We see that the bound is again identical to the prior contributions.

When |Hn| ≪ (k + ℓ+ d− 1)|k − ℓ|, we note that

|Hn + k(k + d− 1)− ℓ(ℓ+ d− 1)| ≳ (k + ℓ)|k − ℓ|,

and hence by considering the weights in the Xs,b norms in (48) we see

σ := ⟨τ + n(n+ d− 1)⟩+
3∑

i=1

⟨τi + ni(ni + d− 1)⟩+ ⟨λ1 + k(k + d− 1)⟩

+ ⟨λ2 + ℓ(ℓ+ d− 1)⟩ ≳ (k + ℓ)|k − ℓ|,
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so that one of the summands on the left hand side of the above must be ≳ (k + ℓ)|k − ℓ|.
From this, we split into four subcases:

i) ⟨τ + n(n+ d− 1)⟩ ≳ (k + ℓ)|k − ℓ|,
ii) ⟨τi + (−1)ini(ni + d− 1)⟩ ≳ (k + ℓ)|k − ℓ| for 1 ≤ i ≤ 3,

iv) ⟨λ1 − k(k + d− 1)⟩ ≳ (k + ℓ)|k − ℓ|,

and let σ0 = ⟨τ + n(n + d− 1)⟩ and σi = ⟨τi + (−1)in1(n1 + d− 1)⟩ for 1 ≤ i ≤ 3. We also

note that for ε < 1
2
(s− d−2

2
) we have

(51) ⟨n⟩ε(kℓ)
d−2
2

+ ≲ σ1/2− (kℓ)s−
1
4
−

|k − ℓ|1/2−
.

To handle the first two cases we then have by Proposition 4.8 with δ = 1/2− that

⟨n⟩εΓn ≲
( 3∑

i=0

σi

)1/2−∥Ftφ∥2Hs
x
,

and hence by Young’s and the Λ2(n) restriction it is sufficient to bound

∥∥∥∫ ∑
Λ2(n)

⟨n1⟩sσ1/2−
i Fx,tφ(n1, τ1)Fx,tφ̄(n2, τ2)Fx,tφ(n3, τ3)

⟨τ + n(n+ d− 1)⟩ 1
2
−⟨n2⟩⟨n3⟩

κ(n, n1, n2, n3)dτ1dτ2dτ3

∥∥∥
L2
τ ℓ

2
n

,

(52)

for 0 ≤ i ≤ 3. Note that we have harmlessly assumed that n1 ≳ n2, n3 in the above display.

We now use Plancherel, duality with w ∈ X0,1/2−, and Hölders to find

(52) ≲ ∥σ0w∥L2
x,t
∥Js

xφ∥L2
x,t
∥J−1

x φ∥L∞
x,t

+ ∥w∥L2
x,t
∥Js

xσ1φ∥L2
x,t
∥J−1

x φ∥L∞
x,t

+ ∥w∥L2
x,t
∥Js

xφ∥L2
x,t
∥J−1

x σ2φ∥L2
tL

∞
x
∥J−1

x φ∥L∞
x,t

≲ ∥φ∥3Xs,1/2+ ,

for s > d−2
2
.

To handle the last case, we note again that by Youngs, (51), and proposition 4.8 with

δ = 1/2−, that we have∥∥∥∥⟨n⟩ε ∑
max(k,ℓ)≥n

k ̸=ℓ

∫
Fx,tφ̄(k, λ1)Fx,tφ(ℓ, τ − λ1) dλ1

∣∣ ∫ π

0

Yk(θ)Yℓ(θ) dθ
∣∣∥∥∥∥

L2−
τ

(53)

≲
∑

max(k,ℓ)≥n
k ̸=ℓ

∥⟨τ − k(k + d− 1)⟩1/2−Fx,tφ̄(k, τ)∥L2−
τ
∥Fx,tφ(ℓ, τ)∥L1

τ

(kℓ)s−1/4−

|k − ℓ|1/2−

≲ ∥⟨k⟩s⟨τ − k(k + d− 1)⟩1/2+Fx,tφ̄(k, τ)∥L2
τ ℓ

2
k
∥⟨ℓ⟩sFx,tφ(ℓ, λ2)∥ℓ2ℓL1

τ
,

for s > d−2
2

and ε < 1/2(s− d−2
2
). In other words, the contribution to Γn can be estimated

by

∥⟨n⟩εΓn(τ)∥ℓ∞n L2−
τ

≲ ∥φ∥2Xs,1/2+ .
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We now estimate (48) by assuming that n1 ∼ n and using Hn ≳ ⟨n2⟩⟨n3⟩ to write

(48) ≲ ∥ 1

⟨τ + n(n+ d− 1)⟩1/2−
(f ∗τ FtΓn)∥L2

τ ℓ
2
n
≲ ∥f ∗τ FtΓn∥ℓ2nL∞−

τ

≲
∥∥∥f∥L2

τ
∥Γn∥L2−

τ

∥∥
ℓ2n

≲ ∥f∥L2
nL

2
τ
∥Γn∥ℓ∞n L2−

τ
≲ ∥f∥L2

nL
2
τ
∥φ∥2Xs,1/2+ ,

where

f =

∫ ∑
Λ2(n)

⟨n1⟩sFx,tφ(n1, τ1)
Fx,tφ̄(n2, τ2)

⟨n2⟩
Fx,tφ(n3, τ3)

⟨n3⟩
κ(n, n1, n2, n3)dτ1dτ2dτ3.

Owing to Plancherel and Sobolev embedding we find that

∥f∥L2
τ ℓ

2
n
≲ ∥φ∥Xs,1/2+∥J−1

x φ∥2
X

d
2+,1/2+

= ∥φ∥Xs,1/2+∥φ∥
X

d−1
2 +,1/2+ ,

and the full bound follows.

The bound (43) follows from Lemma 4.4 and the summation restriction on Λ1(n), as we’ll

have ⟨n1⟩⟨n2⟩⟨n3⟩ ≳ n3/2. Specifically, we ignore the presence of conjugates because we will

apply the bilinear L2 estimate and and assume that either n1 ∼ n or n1 ∼ n2 ≫ n. In either

case we must have that ⟨n2⟩⟨n3⟩ ≳ n1/2.

It then follows by (47), duality with w ∈ X0,1/2−, and the bilinear L2 estimate that

∥Jsφ(J2εφ)∥X0,−1/2+ ≲ ∥wJ2εφ∥L2
x,t
∥JsφJ2εφ∥L2

x,t
≲ ∥φ∥Xs,1/2+∥φ∥2

X
d−2
2 +2ε+,1/2+

≲ ∥φ∥3Xs,1/2+ ,

for s > d−2
2

and ε < 1
2
(s− d−2

2
).

The bound (44) will follow from several applications of Cauchy-Schwarz. We assume

n1 ≥ n2, n2, so that the summation restriction of Λ2(n) implies that ⟨n2⟩⟨n3⟩ ≪ n1/2, hence

1

(⟨n2⟩⟨n3⟩)s−
d−2
2

−n1−ε
≲

n0−

(⟨n2⟩⟨n3⟩)1/2+

for ε < 1
2
min(s− d−5

2
, 2). Now, given s > d−2

2
and ε < 1

2
min(s− d−5

2
, 2) we use Lemma 4.6

to bound κ by O((n2n3)
d−2
2

+) and invoke the above display to find

∥B(v)∥C0
t H

s+ε
x

≲
∥∥ ∑

n1,n2,n3

n̸=n1,Λ2(n)

|v̂n1
̂̄vn2 v̂n3|

⟨n⟩s+ε(n2n3)
d−2
2

+

n|n− n1|
∥∥
C0

t ℓ
2
n

≲
∥∥ ∑

n1,n2,n3

n̸=n1,Λ2(n)

|v̂n1
̂̄vn2 v̂n3|

⟨n1⟩s−(⟨n2⟩⟨n3⟩)s−
1
2
−

|n− n1|
∥∥
C0

t ℓ
2
n

≲ ∥u∥2C0
t H

s
x

∥∥ ∑
n ̸=n1

⟨n1⟩0−|ûn1|
|n− n1|

∥∥
C0

t ℓ
2
n
≲ ∥u∥3C0

t H
s
x
,

by Young’s and Cauchy-Schwarz. □
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Lemma 4.12. Let d ≥ 2, s > d−2
2
, and 0 ≤ ε < min(s− d−2

2
, 1), then

∥N0,1(v)∥Xs+ε,−1/2+
T

≲ε ∥v∥3Xs,1/2+
T

.

Proof. We define

Fx,t(φ)(n, τ) := |Fx,t(v)(n, τ)|,

κ̃(n, n, n2, n3) := κ(n, n, n2, n3)−
1

πωd

∫ π

0

Yn2(θ)Yn3(θ) dθ,

so that we are reduced to bounding

|Fx,t(N0,1(v))(n, τ)|

≲
∫

Fx,t(φ)(n, τ1)
∑

n2,n3≤n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ − τ1 − τ2)|κ̃(n, n, n2, n3)| dτ1dτ2

+

∫
Fx,t(φ)(n, τ1)

∑
max(n2,n3)>n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ − τ1 − τ2)|κ̃(n, n, n2, n3)| dτ1dτ2

:= Fx,t(N
ℓ
0,1 +Nh

0,1).

In order to handle N ℓ
0,1 we see that by Lemma 4.6 that we have

κ(n, n, n2, n3)−
1

π

∫ π

0

Yn2(θ)Yn3(θ) dθ = O

(
(n2n3)

d−1
2 +

n

)
,

and hence it suffices to bound∫
Fx,t(φ)(n, τ1)

∑
n2,n3≤n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ − τ1 − τ3)
(n2n3)

d−1
2 +

n
dτ1dτ2,(54)

in Xs,1/2+.

Noticing that

|Hn(n, n2, n3, n)| = |(n2 + n3 + d− 1)(n2 − n3)| ≳ max(n2, n3)|n2 − n3|,

we separate out two cases:

I) n2 = n3

II) |Hn| ≳ max(n2, n3)|n2 − n3|.

In the first case, we see that the Xs,1/2+ norm of (54) reduces to bounding

∥(54)∥Xs,1/2+ ≲

∥∥∥∥⟨n⟩s+εFx(φ)(n, t)
∑
n2≤n

|Fx(φ̄)(n2, t)|2 n
d−1+
2

n

∥∥∥∥
L2
t ℓ

2
n

≲ ∥φ∥L∞
t Hs

x
∥φ∥

L∞
t H

d−2+ε
2

x

∥φ∥
L2
tH

d−2+ε
2

x

≲ ∥φ∥3
X

s,1/2+
T

,

for ε < min
(
s− d−2

2
, 1
)
.
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We now assume that we have modulation considerations at play. Specifically, if we are in

case II then we again find that

⟨τ2 + n2(n2 + d− 1)⟩+ ⟨τ3 − n3(n3 + d− 1)⟩ ≳ |Hn| ≳ max(n2, n3)|n2 − n3|,

and hence we may assume that ⟨τ2 + n2
2⟩ ≳ max(n2, n3)|n2 − n3|. It follows that

⟨n⟩ε(n2n3)
d−1
2

+

n
≲

⟨τ2 + n2(n2 + d− 1)⟩1/2+(n2n3)
s−1/4−

|n2 − n3|1/2+
,

for ε < min(s − d−2
2
, 1) and s > d−2

2
, so that we find the contribution of the above to (54)

satisfies

∥(54)∥Xs,1/2+ ≲ ∥φ∥L∞
t Hs

x

×
∥∥∫ ∑

n2,n3≤n

⟨τ2+n2(n2+d−1)⟩1/2+(n2n3)s−1/4+

|n2−n3|1/2+
Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ − τ2) dτ2

∥∥
L2
τ ℓ

∞
n

≲ ∥φ∥3Xs,1/2+ ,

by Proposition 4.8 with δ = 1/2+. We note that the proof in the case that ⟨τ2 + n2
2⟩ ≪

max(n2, n3)|n2 −n3| follows as above, with the only difference being which term is placed in

L2
t . This provides smoothing of order

0 ≤ ε < 2min(s− d−2
2
, 1/2), for s > d−2

2
.

We now assume that max(n2, n3) ≳ n, so as to handle the contribution of Nh
0,1. By positivity

and (35) we observe

(55) κ̃(n, n, n2, n3) ≲ κ(n, n, n2, n3) +O((n2n3)
d−2
2

+)

and

⟨n⟩ε
∑

max(n2,n3)≥n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ3)

≲
∑

max(n2,n3)≥n

max(n2, n3)
εFx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ3),

so that the contribution to Nh
0,1 corresponding to the first term of (55) may be handled using

the bilinear L2 Strichartz estimate 4.10. That is, the contribution of the above satisfies (by

duality and the bilinear L2 estimate)

∥Nh
0,1∥Xs+ε,1/2+ ≲ ∥φJsφJεφ∥X0,1/2+ ≲ ∥φ∥Xs,1/2+∥φ∥2

X
d−2
2 +ε,1/2+

≲ ∥φ∥3Xs,1/2+ ,

given 0 ≤ ε < s− d−2
2

and s > d−2
2
.

As for the contribution of the second term of (55), we observe that
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⟨n⟩ε
∑

max(n2,n3)≥n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ3)(n2n3)
d−2
2

+

≲
∑

max(n2,n3)≥n

Fx,t(φ̄)(n2, τ2)Fx,t(φ)(n3, τ3)(n2n3)
d−2
2

+ε+.

We may then bound the contribution to Nh
0,1 by using the exact same case work as that done

to bound N ℓ
0,1. This yields smoothing of 0 ≤ ε < s− d−2

2
for s > d−2

2
. □

Lemma 4.13. Let d ≥ 2, s > d−2
2
, and 0 ≤ ε ≤ s− d−2

2
, then

∥N0,2(v)∥Xs+ε,−1/2+
T

≲ε ∥v∥3Xs,1/2+
T

.

Proof. This proof follows in exactly the same way as the proof of the prior lemma in the

situation max(n2, n3) ≳ n. In particular, if Fx,t(φ) = |Fx,t(v)| then we find

(56) ⟨n⟩s+εF(φ)(n)2
∑
n2

F(φ̄)(n2)κ(n, n, n2, n)

= ⟨n⟩sF(φ)(n)⟨n⟩εF(φ)(n)
∑
n2

F(φ̄)(n2)κ(n, n, n2, n),

and hence by the bilinear L2 estimate and duality with w ∈ X0,1/2−:

∥(56)∥X0,1/2+ ≲ ∥wJε
xφ∥L2

x,t
∥φJsφ∥L2

x,t
≲ ∥φ∥3Xs,1/2+ ,

for ε < s− d−2
2

and s > d−2
2
. □

5. Appendix: Strichartz Estimates and the Cubic NLS

In this appendix we establish a slightly strengthened bilinear Strichartz estimate for a

class of functions in S2, which is useful for lower bounds on the fractal dimension of the

graph of the free solution. As a corollary we establish an improved well-posedness statement

for functions that are supported on the zonal harmonics that matches the statement on T2.

We recall the space Zs and define Bs as

Zs(S2) :=

{
f ∈ Hs(S2) : f(θ, ϕ) =

∑
n

anYn(θ, ϕ)

}
,

Bs(S2) :=

f ∈ Hs(S2) : f(θ, ϕ) =
∑
n

∑
j∈{±1}

anjY
jn
n (θ, ϕ)

 .

The first of these spaces coincides with the space of functions in Hs that are supported only

on the zonal harmonics, whereas the second corresponds to the space of functions supported

only on the gaussian beams Y ±n
n .
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Lemma 5.1. Suppose that f, g ∈ Zs. Then for N ≥ M dyadic and every ε > 0 we have

(57) ∥PN(e
it△S2f)PM(eit△S2g)∥L2

x,t∈[0,2π]
≲ M ε∥PN(f)∥L2

x
∥PM(g)∥L2

x
.

Proof. We first assume that f, g ∈ Zs. Represent

f =
∑
n

fnYn,

and similarly for g. Following [BGZ], we find by Parseval’s (for t ∈ [0, 2π])

∥PN(e
it△S2f)PM(eit△S2g)∥2L2

x,t
=

∞∑
τ=0

∥∥∥∥∥∥∥∥
∑

τ=n(n+1)+m(m+1)
n∼N,m∼M

fngmYnYm

∥∥∥∥∥∥∥∥
2

L2
x

≤
∞∑
τ=0

αNM(τ)
∑

τ=n(n+1)+m(m+1)
n∼N,m∼M

|fngm|2∥YnYm∥2L2
x
,(58)

where

(59) αNM(τ) = #
{

(n,m)∈N2, n∼N,m∼M
τ=n(n+1)+m(m+1)

}
.

By the divisor bound, we have that supτ αNM(τ) ≲ M ε for any ε > 0.

It then suffices to estimate the quantity YnYm in L2. By the first bound in (35) we have

∥YnYm∥2L2(S2) ≲
∫ π/2

0

θnm

⟨nθ⟩⟨mθ⟩
dθ ≤

∫ π/2

0

m

⟨mθ⟩
dθ ≲ M ϵ.

Combining this with the bound for αNM(τ) and summing in τ we find

(58) ≲ M ε∥PN(f)∥2L2
x
∥PM(g)∥2L2

x
.

For more details, see [BGZ]. □

Remark 5.2. The above calculation isn’t generic. That is, f ∈ Bs of the form f = Y n
n

saturates the L4 inequality on S2. Indeed,

Y n
n =

(−1)n

2nn!

√
(2n+ 1)!

4π
sinn θeinϕ,

so

∥f∥4L4
x,t

∼ n

∫ π

0

sin4n+1 θ dθ ∼ n
2n(n!)2

(2n+ 1)!
∼

√
n,

by Stirling’s approximation.

A similar calculation can be done to show that the Zonal harmonics essentially saturate

the L4 inequality for d ≥ 3, [BGZ2].
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As a corollary of the above lemma, we find local well-posedness for s > 0 for functions on

S2 that are independent of ϕ.

Corollary 5.3. Let s > 0 and consider the space Zs(S2) ⊂ Hs(S2). Then the equation

(60)

i∂tu+△u± |u|2u = 0

u(x, 0) = f(x) ∈ Zs(S2)

is locally well-posed for any s > 0.

Remark 5.4. In light of Remark 5.2 we see that the generic statement is s > 1/4 and

cannot, in general, be improved.

6. Appendix: The Torus Case

Before proceeding with theorem statements, we comment that Theorem 2.4 and Theo-

rem 2.8 hold as stated for Td, and their proofs are standard. With preliminaries out of the

way, we can prove a theorem analogous to Theorem 1.1 relatively easily for the Torus. In

particular, we obtain the following natural generalization of the one dimensional statement.

Theorem 6.1. Let f : Td → R and define fN(x) :=
∑

N<maxi{|mi|}≤2N f̂(m)eim·x. Assume f

satisfies ∥fN∥L1
x
≲ N−( d

2
+s) for some s ∈ (0, 1]. Define

u(x, t) :=
∑
m∈Zd

ei|m|2tf̂(m)eim·x,

and

HN(x, t) :=
∑

N<maxi{|mi|}≤2N

eit|m|2eim·x.

Then for almost all t, u(t, x) ∈ Cs− and dimt(f) ≤ (d+ 1)− s.

Before moving on to the proof of the theorem, we will need the following proposition that

easily follows from factorization and the 1 dimensional Weyl bound.

Proposition 6.2. For N ≥ 1 dyadic, and almost every t:

sup
x∈Td

∣∣∣∣ ∑
N≤max{|m1|,··· ,|md|}<2N

eit|m|2eim·x
∣∣∣∣ ≲ N

d
2
+.

Theorem 6.1. This proof is substantially easier than Theorem 1.1. We write

∥PN(u(·, t)∥L∞
x
= ∥fN ∗HN∥L∞

x
≲ ∥fN∥L1

x
∥HN(·, t)∥L∞

x
≲ N

d
2
−( d

2
+s) = N−s,

for almost every t. It follows by Theorem 2.4 that for almost every t we have the fractal

dimension of the graph of u is bounded above by (d+ 1)− s. □
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Remark 6.3. The L1 condition assumed above is rather unwieldy and is way too strong

to obtain a lower bound. We correct this in the following two theorems, which are more

analogous to the one dimensional statements for BV functions.

We now, for simplicity of statement, restrict ourselves to d = 2. It may be desirable to

estimate the dimension of the graph under an assumption on the Fourier coefficients, in

which case we will need more information about how the Fourier coefficients of f behave. In

particular, we’ll need to define, for m = (m1,m2):

σm(f) = f̂(m1 + 1,m2 + 1)− f̂(m1 + 1,m2)− f̂(m1,m2 + 1) + f̂(m1,m2),

as well as

σ1
m(f) = f̂(m1 + 1,m2)− f̂(m1,m2)

σ2
m(f) = f̂(m1,m2 + 1)− f̂(m1,m2).

These terms measure how much f̂ varies near the point m ∈ Z2.

With the prior definition out of the way, we find Theorem 6.4 by a direct application of

summation-by-parts.

Theorem 6.4. Let m ∈ Z2, s ∈ (0, 1), and suppose that the Fourier coefficients of f satisfy,

for 1 ≤ i ≤ 2:

(61) |f̂(m)| ≲ 1

⟨m⟩1+s
, |σi

m(f)| ≲
1

⟨m⟩2+s
, |σm(f)| ≲

1

⟨m⟩3+s
.

Let

u(x, t) :=
∑
m∈Zd

ei|m|2tf̂(m)eim·x,

be the solution emanating from f .

i) Then for almost all t: u(x, t) ∈ C(s−1)− and hence dimt(f) ≤ 3− s.

ii) If u(x, t) is continuous in x and r0 = supr{r : f ∈ Hr}, then

dimt(f) ≥ 3 + s− 2r0.

In particular, if f satisfies (61) with s = 1
2
and f ̸∈ H1/2, then for almost every time, t, we

have

dimt(f) =
5
2
.

Proof. The first claim follows from a direct application of summation-by-parts (done twice)

to the function

uN(x, t) =
∑

N<maxi{|mi|}≤2N

ei|m|2teim·xf̂(m).
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The second follows by the Strichartz estimate (17) and the standard interpolation argument.

□

6.1. Bounded Variation on the d-Torus. In this subsection we comment on and provide

some results relating to higher dimensional generalizations to bounded variation and their

applications to estimations of the dimension of the graph of the free solution associated to

(1).

For 1 ≤ i ≤ d and λi ∈ N we choose {x(i)
j }λi

j=1 so that

0 = x
(i)
1 < · · · < x

(i)
λi

= 1.

We define Π to be the collection of all tuples of d such sequences.

With these sequences, we define the difference operators ∆ij for 1 ≤ j ≤ λi to be

∆ijf := f(y1, · · · , yi−1, x
(i)
j+1, yi+1, · · · , yd)− f(y1, · · · , yi−1, x

(i)
j , yi+1, · · · , yd).

Definition 6.5 (Vitali Bounded Variation). Let V be the space of functions f satisfying

sup
Π

∑
1≤j≤λi−1

∣∣∣∣∣(∏
i

∆ij)f

∣∣∣∣∣ < ∞.

There is also a slight modification on this space, Fréchet Bounded Variation.

Definition 6.6 (Fréchet Bounded Variation). Let ϵi, νj ∈ {−1, 1}. Then let F be the space

of functions satisfying

sup
Π,ϵij

∣∣∣∣∣ ∑
1≤j≤λi−1

(
∏
i

ϵiνj∆ij)f

∣∣∣∣∣ < ∞.

It’s clear that V ⊂ F , but these two spaces do not coincide, [ClAd]. The main benefit of

these spaces is that if f ∈ V (Td) and g is continuous then, we have a generalized Stieltjes

integration-by-parts formula of the form

(62)

∫
Td

f dg = (−1)d
∫
Td

g df,

where dg can morally be thought of as ∂x1,··· ,xd
g. Similarly, when g(x1, · · · , xd) =

∏
i ηi(xi)

for continuous ηi then (see, for example [Cl]) for f ∈ F (Td) we again have the formula (62).

It’s interesting to note that, as a consequence of these formulas, the Fourier coefficients of

f ∈ F (Td) satisfy

|f̂(m)| ≲ 1∏
1≤i≤d
mi ̸=0

|mi|
,

which is again analogous to the one dimensional case.

With these definitions we can then show the following theorem.
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Theorem 6.7. Let f ∈ V (Td)\H1/2+(Td) (or F\H1/2+). Then for almost every t, dimt(f) =

d+ 1/2.

Proof. We prove this for f ∈ V , but the statement also holds for f ∈ F by the factorization

of the convolution kernel. Let

H̃N(x, t) =
∑

N≤maxi(|mi|)<2N

eit|m|2+ix·m

R(m)
, where

R(m) =
d∏

i=1
mi ̸=0

mi.

It follows that H̃N(x, t) is continuous in x for almost every t, and hence for almost every t

we find by (62): ∫
f(y)HN(x− y) dx = (−1)d

∫
H̃N(x− y) df(y),

so that

∥PN(u)∥L∞ ≲ ∥H̃N(·, t)∥L∞|df |(Td) ≲f N− 1
2
+,

where we have again invoked 6.2 and summation-by-parts. It follows that dimt(f) ≤ (d +

1)− 1/2 = d+ 1/2.

For the lower bound, we see that

∥PN(u)∥L2 ≲ ∥H̃N(·, t)∥L2 ≲ N− 1
2
+,

so that we find the appropriate level for u is H1/2+, motivating the statement of the theorem.

Now, noting that u is continuous, we assume that u ̸∈ H1/2+ and interpolate to obtain that

dimt(f) ≥ (d+ 1)− 1/2 = d+ 1/2. □

It’s worth noting that the above is not in any sense optimal. Indeed, consider a small cube,

R, supported in [0, 1]d. If the sides are parallel to the coordinate axes then the characteristic

function of R will clearly be in V (and hence F ), but if we slightly rotate the square R, then

it immediately leaves both classes.

We can say more, however: the characteristic function for any simplex P ⊂ T2 has fractal

dimension that is exactly 5
2
.

Theorem 6.8. Let P be a polygon in T2, and χP the characteristic function associated to

P . Then dimt(f) =
5
2
for almost all t.

Proof. By triangulation we reduce the problem to considering triangles. By utilizing subtrac-

tion we can further reduce the problem to considering right triangles with two sides parallel
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to the coordinate axis. Without loss of generality we can then just consider a non-degenerate

right triangle, T , with vertices (0, 0), (x2, 0), and (x2, y2).

We readily calculate the nontrivial (n,m ̸= 0) Fourier coefficients of χT to be

(63) χ̂T (n,m) =


y2(e2πinx2−1)e−2πiny2

4π2n2 m = −nx2

y2
, n ̸= 0

y2(e−2πi(x2,y2)·(n,m)−1)
4π2n(my2+nx2)

+ (e2πimy2−1)e−2πiy2(m+n)

4π2nm
else.

The ommitted cases are all trivial by one dimensional theory, and so is the second term

in the last case. We thus restrict ourselves to considering the term (modulo constants)

e−i(x2,y2)·(n,m)

n(m+ n)
,

which will be sufficient to prove the full result by noting that the only difference in the

argument will be nearest integer considerations.

We first let u = e−it△χT and consider when |m| < |n|, and note that in order to show the

upper bound we need to bound the L∞ norm of

PN(u) =
∑

N<|n|≤2N

eitn
2+i(x−x2)n

n

∑
−|n|<m<|n|

eitm
2+i(y−y2)m

n+m

=
∑

N<|n|≤2N

e2itn
2+i(x−x2)n−(y−y2)|n|

n

∑
0<h<2|n|

eith
2+i(y−y2−2|n|)h

h

=
∑

0<h<4N

eith
2+i(y−y2−2|n|)h

h

∑
max(N,h+2N

3 )<|n|≤2N

e2itn
2+i(x−x2)n−(y−y2)|n|

n
.

From this we find that

∥PN(u)∥L∞ ≲
N

1
2
+ logN

N
= O(N−1/2+),

for almost every t uniformly in N, x2, y2. The region |m| ≥ |n| follows in the exact same

manner, and hence u ∈ C1/2− and dimt(f) ≤ 5
2
.

As for the lower bound, we note that it’s a standard result on Rd that the characteristic

function of a measurable set with positive measure are not in H1/2. These results trivially

extend to Td, and hence we conclude χP ∈ H1/2− \ H1/2 as well as the lower bound as

before. □

The above generalizes to polytopes in [−1, 1]d. Indeed, Stokes theorem can be used to

write the Fourier transform of the characteristic function of a d-dimensional polytope as a

sum of products, each of which contains d homogeneous algebraic factors of degree −1, see

Theorem 1 of [DLR]. It then follows using the exact same change of variables as above that

the following theorem holds.
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Theorem 6.9. Let P be a polytope in Td, and χP the characteristic function associated to

P . Then for almost every t, dimt(χP ) = d+ 1
2
.
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